19 research outputs found

    Ternary Singular Value Decomposition as a Better Parameterized Form in Linear Mapping

    Full text link
    We present a simple yet novel parameterized form of linear mapping to achieves remarkable network compression performance: a pseudo SVD called Ternary SVD (TSVD). Unlike vanilla SVD, TSVD limits the UU and VV matrices in SVD to ternary matrices form in {±1,0}\{\pm 1, 0\}. This means that instead of using the expensive multiplication instructions, TSVD only requires addition instructions when computing U(⋅)U(\cdot) and V(⋅)V(\cdot). We provide direct and training transition algorithms for TSVD like Post Training Quantization and Quantization Aware Training respectively. Additionally, we analyze the convergence of the direct transition algorithms in theory. In experiments, we demonstrate that TSVD can achieve state-of-the-art network compression performance in various types of networks and tasks, including current baseline models such as ConvNext, Swim, BERT, and large language model like OPT

    Casting a BAIT for Offline and Online Source-free Domain Adaptation

    Full text link
    We address the source-free domain adaptation (SFDA) problem, where only the source model is available during adaptation to the target domain. We consider two settings: the offline setting where all target data can be visited multiple times (epochs) to arrive at a prediction for each target sample, and the online setting where the target data needs to be directly classified upon arrival. Inspired by diverse classifier based domain adaptation methods, in this paper we introduce a second classifier, but with another classifier head fixed. When adapting to the target domain, the additional classifier initialized from source classifier is expected to find misclassified features. Next, when updating the feature extractor, those features will be pushed towards the right side of the source decision boundary, thus achieving source-free domain adaptation. Experimental results show that the proposed method achieves competitive results for offline SFDA on several benchmark datasets compared with existing DA and SFDA methods, and our method surpasses by a large margin other SFDA methods under online source-free domain adaptation setting

    Exploring the Training Robustness of Distributional Reinforcement Learning against Noisy State Observations

    Full text link
    In real scenarios, state observations that an agent observes may contain measurement errors or adversarial noises, misleading the agent to take suboptimal actions or even collapse while training. In this paper, we study the training robustness of distributional Reinforcement Learning~(RL), a class of state-of-the-art methods that estimate the whole distribution, as opposed to only the expectation, of the total return. Firstly, we validate the contraction of distributional Bellman operators in the State-Noisy Markov Decision Process~(SN-MDP), a typical tabular case that incorporates both random and adversarial state observation noises. In the noisy setting with function approximation, we then analyze the vulnerability of least squared loss in expectation-based RL with either linear or nonlinear function approximation. By contrast, we theoretically characterize the bounded gradient norm of distributional RL loss based on the categorical parameterization equipped with the Kullback-Leibler~(KL) divergence. The resulting stable gradients while the optimization in distributional RL accounts for its better training robustness against state observation noises. Finally, extensive experiments on the suite of environments verified that distributional RL is less vulnerable against both random and adversarial noisy state observations compared with its expectation-based counterpart

    Trust your Good Friends: Source-free Domain Adaptation by Reciprocal Neighborhood Clustering

    Full text link
    Domain adaptation (DA) aims to alleviate the domain shift between source domain and target domain. Most DA methods require access to the source data, but often that is not possible (e.g. due to data privacy or intellectual property). In this paper, we address the challenging source-free domain adaptation (SFDA) problem, where the source pretrained model is adapted to the target domain in the absence of source data. Our method is based on the observation that target data, which might not align with the source domain classifier, still forms clear clusters. We capture this intrinsic structure by defining local affinity of the target data, and encourage label consistency among data with high local affinity. We observe that higher affinity should be assigned to reciprocal neighbors. To aggregate information with more context, we consider expanded neighborhoods with small affinity values. Furthermore, we consider the density around each target sample, which can alleviate the negative impact of potential outliers. In the experimental results we verify that the inherent structure of the target features is an important source of information for domain adaptation. We demonstrate that this local structure can be efficiently captured by considering the local neighbors, the reciprocal neighbors, and the expanded neighborhood. Finally, we achieve state-of-the-art performance on several 2D image and 3D point cloud recognition datasets.Comment: Accepted by IEEE TPAMI, extended version of conference paper arXiv:2110.0420

    Positive Pair Distillation Considered Harmful: Continual Meta Metric Learning for Lifelong Object Re-Identification

    Full text link
    Lifelong object re-identification incrementally learns from a stream of re-identification tasks. The objective is to learn a representation that can be applied to all tasks and that generalizes to previously unseen re-identification tasks. The main challenge is that at inference time the representation must generalize to previously unseen identities. To address this problem, we apply continual meta metric learning to lifelong object re-identification. To prevent forgetting of previous tasks, we use knowledge distillation and explore the roles of positive and negative pairs. Based on our observation that the distillation and metric losses are antagonistic, we propose to remove positive pairs from distillation to robustify model updates. Our method, called Distillation without Positive Pairs (DwoPP), is evaluated on extensive intra-domain experiments on person and vehicle re-identification datasets, as well as inter-domain experiments on the LReID benchmark. Our experiments demonstrate that DwoPP significantly outperforms the state-of-the-art. The code is here: https://github.com/wangkai930418/DwoPP_codeComment: BMVC 202
    corecore